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1 Introduction

Large systems of coupled non-linear ordinary differential equations (DAE) arise naturally in
applications areas like in the design of radio-frequency integrated circuits. The steady-state
response of a non-linear system to periodic or quasi-periodic stimulus is of primary interest to
a designer because certain aspects of system performance are easier to characterize and verify
in steady state. For example: noise, distortion, blocking are best measured when a circuit is in
this state. The system of equations generated in circuit design has the following form,

F0(0) + Fav(t)) —b(t) =0, (1)

where m is the number of circuit nodes excluding the reference, g(v(t)) € R™ is the vector of
sums of capacitor charges at each node, f(v(t)) € R™ is the vector of sums of resistor currents
at each node, b(t) € R™ is the vector of input currents, and v(t) € R™ is the vector of node
voltages. “Closed form” solutions to these ODE’s are extremely difficult, if not impossible, to
obtain because of the size of the problem and the complexity of non-linear models. Computing
the solutions numerically is a highly effective alternative to computing the solutions analytically.

There are a variety of methods that directly compute the steady-state solution [9]. In the
time domain, the standard approaches are finite-difference methods and the shooting methods.
Shooting methods solve boundary-value problems by computing the solution to a succession of
initial value problems, with steadily improved guesses at an inital condition which results in
steady-state. Finite-difference methods generate a sequence of algebraic equations by replacing
the system of continuous time differential equations with a discrete system. The sequence of
algebraic equations are then solved simultaneously to compute the boundary-value problem
solution. Alternatively, in the frequency domain, the the unknowns are the coffecients of a
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trigonometric series [10,11,12]. Such methods applied to nonlinear circuits are referred to as
harmonic-balance methods.

Finite-difference methods have not been commonly used for circuits problems because of the
large size of the system. Typically, the number of waveforms is between 100 and 1000, and
the number of discretization points is between 32 and 1024. Thus the dimension of this system
can exceed 100,000(!). Numerical solutions to nonlinear problems typically require the solution
of a sequence of linear systems as a subproblem, which for large systems is a computational
bottleneck. Recent applications of iterative methods [4-8] to solve the system of linear equations
in each Newton step have brought renewed interest in the finite-difference methods. Systems
that conventional Gaussian eliminiation would have floundered on are now manageable because
of the memory and time savings possible with such iterative linear solves.

In this report, we solve for the steady-state solution of non-linear DAFE’s arising from circuit
design using finite-difference and harmonic-balancing methods. Various numerical differentiation
techniques are considered. Small problems are solved using direct methods while systems of
larger size are solved using iterative methods. We apply various preconditioners to speed up the
convergence and compare their effectiveness by looking at the number of iterations needed for
the iterative method to converge.

2 Time-Domain Methods

n the time domain, the initial condition of the steady-state solution must match the solution at
the end of one period. Finding the solution to (1) is a two-point boundary-value problem if the
solution is required to satisfy

v(t) = v(tn) = c.

One of the standard approaches fo solving boudnary-value problems is the finite-difference
method.

2.1 Numerical Differentiation

Numerical methods for solving ODE’s do not produce a continuous approximation to the solu-
tion. Rather, approximations are found at certain specified, and often equally spaced, points.
Thus, we only require (1) to hold at certain points, say {v(to),v(t1),-..,v(tn)}. Since g(v(t))
can be evaluated but not & ¢(v(t)), %q(v(t)) must also be approximated.

There are different ways of approximating the first derivative of a function at a given point.
Each one is characterized by how many points are needed to approximate the derivative and
how well it approximates the derivative. For example, let h = ¢, — tx_1. By Taylor’s Theorem,

alth 1) = alte) — ha'(6) + "o (€(@),
or

¢(t) = L =00 | P e,

For small values of h, the difference quotient [g(¢x) — q(tx_1)]/h can be used to approximate
q'(z)- This formula is known as the backward Euler formula. Since two points are required
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to evaluate the backward Euler formula and the error term has a factor of h, we say that it is a
2-point finite-difference formula of order 1. The following are formulas to approximate the first
derivative, the number of points needed to evaluate the formula, and their order.

1. Backward Euler Formula: n = 2; order = 1.

gy = A o)

2. Forward Euler Formula: n = 2; order = 1.

r o q(tegr) —q(ty)
h=—"""p -

3. BDF: n = 3; order = 2.

3q(tk) — 2q(tk—1) + 5q(tp—2)
2h

Q=

4. Centered-Difference Formula: n = 2; order = 2.

’_ q(tk+1) — q(te—1)

For the backward Euler formula, we can write an approximation to (1) as

[ fl(’U()) 1 [ 1 0o ... -1 1T ql(’U()) i [ bl(t()) i
fi(v1) 11 . o q1(v1) b1 (1)
fl(v;%l) 0 0 ¢1(Vn_1) b1(t;h1)
fl('Un) 1 0 0 -1 1 ql(vn) bl(tn)
fm('UO) 1 0 -1 qm(UO) bm(tO)
fmF’Ul) -1 1 0 ngvl) bm(tl)
Fn(tm-1) O 0 )| [baltas)
L fm(va) | i 0 0 -1 1] [ gm(va) | L b (tn) |

where v; = v(t;). The zero of this function would correspond to the approximate values of v(t)
at times {tg,t1,...,t,} which represent a steady-state solution. We solve this numerically by
applying Newton’s method.

2.2 Newton’s Method

Because of its quadratic convergence near a solution, Newton’s method is one of the most
pwerful and well-known numerical methods for solving a zero-finding problem H(z) = 0, where
H : RP — RP. It generates a sequence of iterates that converge to a solution by solving a sequence
of systems of linear equations. A typical implementation of Newton’s method with a linesearch
is the following:
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Initialize z < xp;

Compute H(z);

do while ||H(z)| > €;
Compute DH(z);
Solve DH(z)Az = —H(z);
Choose steplength o € (0,1];
T+ T+ oAx;

end do

where DH(z) is the Jacobian of H(z).

2.2.1 Linesearch
Newton’s method works under the assumption that
H(zk41) = H(zp) + DH () (wp41 — T3)-

It finds the zero of the right-hand side to compute the step. If H(x) is badly behaved, e.g.,
changes in the derivatives are big, then this truncated first-order Taylor expansion is a poor
approximation of H(x) near z;. Thus by taking a step along Az, the iterates might actually
move away from z*, the zero of the function, and Newton’s method might not converge. Also,
by choosing zj11 = z + Az, there is no guarantee that ||H (zg+1)||2 < ||H(zg)||2. To safeguard
the iterates from diverging and guarantee that the function value decreases at each iterate, the
steplength along every Az is limited by an appropriate criterion.

Linesearch techniques determine a steplength o € (0, 1], along Az that ensures a decrease in
the norm of the function value and helps Newton method converge. In our implementation of
the linesearch, o is chosen such that

|H (2 + oAz)||2 < [[H(zk + TAZ)||2

for all 7 € [0, 1]. Such a o always exists since Az is a descent direction for the function || H(z)||2.
By choosing o this way, we compute zj1 such that ||H(zgy1)||2 < ||H(zk)||2 while maximizing
the descent along the full Newton step Ax for each iteration. Near the zero of the function,
note that linesearch steplength approaches the value 1 since the linear Taylor expansion better
approximates the function.

2.2.2 Reverse Call

A feature called reverse call is used in our implementation of Newton’s method. It requires that
all function evaluations, matrix-vector multiplications, and linear solves be done in the main
file. In this way, the Newton solver is completely independent of the calling sequence for all the
necessary operations for solving

DH(z)Az = —H(z).

This becomes crucial when applying the Newton solver to problems with different data struc-
tures. In Newton solvers without reverse call, the calling sequence for performing the linear
solves must be altered for problems with different data structures. Thus the Newton solver
must be modified. On the other hand, Newton solvers with reverse call need not be changed
for problems with different data structures. The appropriate changes are made in the main file
which must be changed anyway for different problems.
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2.2.3 Tensor Products

Tensor products for matrices are also known as Kroneker products [3]. Denoted by ®, it forms
an mn X mn matrix A ® B from an m X m matrix A and an n X n matrix B by replacing each
component a;; of A by the n X n matrix a;; B, where 1 < ¢ <m, and 1 < j < m. For example,
suppose A and B are two matrices, where

a1 a2 a1 B ax2B

A [011 012] _ then A® B = [0113 0123] '
i.e. A® B will stamp four copies of B and scale each copy by the corresponding scalar element

of A. The backward Euler difference matrix in (2) can be written as (I, ® A,), where

1 0 ... 0 —1]

-1 1 0 . 0
An=1] 0 -1

: 1 0

0 ... 0 -1 1]

Define H(v) : R™ — R™" as the left hand side of 2. We write H(v) as 1.

50 1 40
H(v) = U+E(An®Im) v —b,
f0 q()

or by an abuse of notation,

H(w) = (I ® J0)v + 7 (An @ In)(In @ 400 —b.

2.2.4 Stride Permutations

While tensor product allows us to represent large matrices of a certain structure in compact
form, stride permutations allow us to greatly simplify our implementation of tensor product
actions on vectors. Simply put, a stride permutation maps an mn-vector to an nm-vector in the
following way:

U11 U11
Uln Un1
U21 U12
>
U2n Un2
Um1 Ulm
| Umn | | Unm |

!The pseudo-matrix [f()] was suggested by Peter Feldman
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Note that on the level of 2-dimensional arrays, stride permutation is equivalent to matrix tran-
pose. Tensor products and stride permutations are closely linked in the following way:

Theorem If A and B are mn X mn matrices and P is a stride permutation, then
P(A® B)P™! = (B® A).

Proof: [3].

Consider the action of the backward Euler difference matrix (A, ® I;,) on the vector (I, ®
q())v. By applying the stride permutation P, we obtain

PlP(A, ®I)P'P(I,®q())v = P (I, ®An)P(I, ®q()v
Ay
= p! P(In®Q())U-
Ay

The system is now decoupled. Hence computing the product is made easy.
2.2.5 Constructing the Jacobian
With this notation, we can now construct the Jacobian of the discretized DAE:
1
H(U) = (In ® f())v + E(An ® Im)(In ® Q())U —b.

Since the differential operator is linear, then

D10 1 Da()
DH(U): U+E(An®Im) v,
Df() Dy()

DH() = (I ® Df ()0 + 3 (An ® In)(In ® DgO).

Note that the Jacobian is sparse and hence does not need too much computational memory.
Not only that, performing matrix-vector products with the Jacobian can be made faster using
stride permutations. These features will play a prominent role in one of the methods for solving
the Newton equations.

The bottleneck in Newton’s method is solving the linear system

We now consider the two main methods for solving these equations.
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2.3 Direct Methods

Direct techniques for solving a system of linear equations Ax = b are methods that give an
answer in a fixed number of steps, subject only to roundoff errors. For arbitrary nonsingular
matrices A, Gaussian elimination is the principal tool in the direct solution of such systems. It
computes a lower triangular matrix L and an upper triangular matrix U such that

A=1LU.

(Often pivoting is used to stabilize the algorithm. The factorization PA = LU is what is actually
computed.) Solving Az = b then reduces to solving two triangular systems

Ly=b, Uz=y. (3)

Since L and U are triangular matrices, (3) is easily solved using back and forward substitu-
tion. In our implementation, the subroutine dgetrf in LAPACK is used to compute the LU
factorization of A and dgetrs to solve Ly =b and Uz = y.

Example 1. Consider the following mechanical resonance example:

u(t) r(t)

-0 + -0+
1o T
!
+ T MASS
w

b

where u(t) is the driving term, r(t) is the displacement term, and s(¢) is the time derivative of
7(t). This mechanical system is described by the following equations:

u(t) — Ampl - sin(wt) = 0
d
t) — t) =
s(t) — —r(t) 0
Mass - %s(t) + Damp - s(t) + Spring(r(t) — u(t)) = O,
We can write these in the form (1), where

|-u u u 0 Ampl - sin(wt)
falr| — s ,q: |r| = —r , b(t) = 0
|_s Damp - s + Spring(r — s) s Mass - s 0
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If the spring term in the third equation is linear, then this DAE have the following solution:

u(t) = Asin(wt)
/D2 _ JD2 —
cle_Dt/2M cos (wt> + czeth/2M sin (wt>

2M 2M

kA(k — Mw?)
(k — Mw?)? + (Dw?)

—kADw
(k — Mw?)? + (Dw?)

sin(wt) + cos(wt)

s) = )

where A = Ampl, M = Mass, D = Damp, and k = Spring.
We now compare the analytic solution with a numerical solution. For this problem A =
1,M =1,D = 0.2, and w = 1/6. The backward Euler was used to approximate the derivative

3 3
— u(t) — u()
r(t) r(t)
- s - s()
2 : 2t :
Al
@

Steady-state solution
o

_2 = - _2 - .
_3 1 1 _3 1 1
0 50 100 0 50 100

Analytical solution Time backeul n=128
Figure 1: comparision between numerical soln and analytic soln

Note that the analytic solution becomes nearly steady after one period. Other forms of
differentiation operators were also tried with equal success.

Figure (2) shows the norm of the amplitude of a response to a fixed damping at various
excitation frequencies. The overlap and discontinuity suggests that there exists multiple steady
states with one unstable solution which points out a qualitative difference between the linear
and non-linear cases.
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two branches for Damp=0.1
2 T T

amplitude of response
o o I I g
o © [ N B (2]
T T T T T T
Il Il Il Il Il Il

I
i
T
I

0.2 b

omega

Figure 2: Amplitude of response for fixed damp = 0.1

2.4 Iterative Methods

For a large sparse matrix A of dimension p > 10,000, computing its LU decomposition might
not be suitable for a couple of reasons. First, although A is sparse, L and U might not be.
Thus a full p x p matrix must be stored. Memory in this case becomes an issue since n? entries
must be stored. Second the computational time it takes to form such factorizations is O(p®). If
solving systems of this size many times is necessary, it is easy to see why forming the LU factors
would be cumbersome. An alternative to solving Az = b directly is to use iterative methods.

Tteratative methods to solve the linear system Ax = b start with an initial approximation
xo to the solution z* and generates a sequence of vectors {zj}7>, that converge to z*. For
large sparse systems, these techniques are efficient in terms of both computer storage and com-
putational time since the matrices do not have to be formed explicitly and are used only in
matrix-vector operations. The matrix fill-ins that occur in direct factorization does not happen
in iterative methods.

2.4.1 Preconditioning

The number of iterations for an iterative method to converge depends on the number of distinct
eigenvalues of A. In general, the closer the eigenvalues of A to unity, the fewer iterations it takes
to converge. When A has very scattered eigenvalues, solving the linear system iteratively might
just be as slow as solving it directly. A technique known as preconditioning can be applied to
alleviate this problem.

Since iterative methods converge faster whenever the eigenvalues of A are close to one,
instead of solving the system Ax = b, the system

A Az = A1
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where A ~ A, is solved. A is called a (left-) preconditioner of the system Az = b. The effective-
ness of A depends on how well the eigenvalues of A~! A are clustered and how easy it is to solve
the linear system Ay = c. Typical preconditioners are diagonal and triangular matrices. There
is not one preconditioner that can be used for all linear systems. The best preconditioners are
typically derived from the applications where the linear system arises.

2.4.2 Circulant Matrices

Circulant matrices are matrices of the form

Co Co Cn Ch—1 ... C

c1 c1 ¢ Cn ... C2

C =circ(| ¢ |) = |ea2 @ o T s
Cn—1

| Cn lchn 1 ...

For example, the matrices for all the numerical differentiation are circulant matrices. Circulant
matrices have the property that as a class of matrices, they are all simultaneously diagonalized
by the discrete Fourier transform (DFT)

1 1 1 e 1
1 w w? . Wt

F, = 1 W? w? . w2(nl) ,
1 w1 w(n.—1)2 w(n.—l)Z

where omega is the nth root of unity. For example, for n = 4, if j is the fourth root of unity,
then

adec b1 1 1 1 11 1 17 X
boadec|l|t j 23 |1 24 M

¢ boa dl (1 72 5 5% |1 72 5P A2
d ¢ b alll j j°;° A A A3

Note that this also implies that diagonal matrices under DFT similarity transformations are
circulant. Note also that linear circulant systems are easy to solve and can be done in O(plogp)
steps. The class of circulant matrices has many other properties such as closure under addition,
multipication, and inverses, but these properties are not used in our context.

It is not hard to see that for the block diagonal matrices

Df() Dq()
Df() Dq()

and . )
Df() Dq()

their image under the similarity transformation (F, ® I,,) are circulant. Similarly, the image of
P(A, ® I;,)P~! where P is the stride permutation, under (F}, ® I;,) is block diagonal. Thus
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the matrix

H(z) = (Fo®In)(In® Df())(F, & Im)

(P ® In)(Bn ® In)(F ® In)(Fa ® In) (In ® Dg()) (F ® ).

T

is the sum of a block circulant matrix and a block-scaled circulant matrix. It has been observed
that this matrix sum is often block-diagonally heavy. We attempt to use this as a precondi-
tioner in the time domain by applying inverse DFT similarity transformations and compare its
effectiveness with the other preconditioners.

2.4.3 Circuits Problem

Consider the following circuit example. The system equations for the above amplifier are:

vCcC

rbl —(

rs cb v(t) FOF
—IW—O—)|
) |

@ A-sin(et) b2 i)
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cti(vcc —u(t)+Ig+ 1+

12

vee—u

—aplp = 0
dt vt OFF
d vee — v v
b—(s — —— —Igp—1 I I =
byl —+t =g o, TR Irtarlrtarl 0
Ir— L —aplzg = 0
re
A - sin(wt) — s d
S T b (s — =
rs 7 (s =) 0
d
ltEI —(vece—u) = 0
Ir —diolv—r) = 0
Ir —dio(v —u) = 0,
where
w = 84x10%x2rm A = 05
rby = 4.7 x 103 rby = 700
re = 5 rt = 200
rs = 50 it = 92x10°°
cb = 1x107° ct = 39x10712
vee = 8
ap = 0.98 arp = 0.25
and diO‘(y) : Is e™Vt¥ — 1 where Is :. 1x 10'716 and rVt = 0.0057008" We first formulate the
above circuit to the standard form as in (1), i.e.,
I vee — u ro.d 7
Ip+ 1+ —aplp CtE(’UCC—U(t»
vee — v v d
———Ig—-1I I I b—(s —
b b, IR F+arlr + arlg c dt(s v)
re d
f(x(t)) = —s , q(x(t) = —cb— (s —v) ’
— dt
rs p
_ _ t—1
(vee — u) 7
Ip —dio(v —r) 0
| Ip — dio(v — u) | 0 |
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i 0 i [ u(t) ]
0 v(t)
0 r(t)
b(t) = A'SZ(”” . x(t)=| s®
I(t)
0
0 Ir(t)
i 0 | i Ig(t) |

In this example, the number of equations m is 7. Discretizing one period into n = 100 nodes,
we obtain the following results using the backward Euler formula and Gaussian elimination to
solve the linear subproblem:

20 20
10 -
\/\/\ S10 \/\/\
0
0
0 05 1 15 2 0 05 1 15 2
, §
0.4
g1 /\/\/ £0.2
0
0
0 05 1 15 2 0 05 1 15 2
05 0.2
2 o m = /\/\
0 -02
0 0.5 1 15 2 0 0.5 1 15 2
0.2 =
o1 o5
= £ 0
0 -0.05
-0.1 -0.1
05 1 15 2 0 05 1 15 2
x10° x10°

Figure 3: Solutions of Amplifier

The graphs are taken over two periods. The initial value is chosen to be the vector of all
ones. The error tolerance 10710 is reached after 10 iterations. Note that the waveform of the
response of r(t) and Ir(t) are non-sinusoidal.

2.4.4 Preconditioner Comparisons

The rate of convergence can be dramatically affected by the choice of a preconditioner. Some of
the possibilities are discussed here.
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Preconditioner Differentiators
BDF2 | BE [ CD | FE
Band-diag(%Z ) 6| 4] na| 5
Block-diag(F 57 F*) 20| 21| 22| 49
Diag(go,915---,9n-1) 94| 94| 63| 94
Block-diag(%2) 99 | 97| na| 97
Identity 149 | 146 | 143 | 150

Table 1: Number of time-domain iterations using preconditioners and 4 differential operators

The choice of a good preconditioner depends on the structure of the Jacobian matrix, which
in turn, depends on the choice of the differential operator. For the BDF2, backward Euler
(BE) and forward Euler (FE) differentiation, the Jacobian matrix is an upper or lower block
bidiagonal matrix with a coupling block on one corner. The above Jacobian matrices are given
in

The first preconditioner is then taken to be the band-diagonal Jacobian matrix with the
coupling block removed. However, this choice is not appropriate for the centered difference
formula (CD) since the Jacobian is a block tridiagonal matrix with two coupling blocks on
the corners. The removal of the two coupling blocks gives a block tridiagonal matrix which is
costly to invert. This choice of a preconditioner motivates the fourth choice, that is, taking the
preconditioner to be the block diagonal of the Jacobian matrix. Just like in the previous case,
this does not work for the CD differentiation.

The second preconditioner is derived from the block diagonal matrix (F %—ZIF*) where F =
(F ® I;). As mentioned before, the pre-image of this preconditioner is the block diagonal of a
block-diagonally heavy matrix.

The third preconditioner considered here is diag(go,91,---gn—1) Where gg,91,...,9n—1 are
the Jacobians of fy, f1,..., fn-1-

Finally, the identity preconditioner (i.e. no preconditioner) is investigated here.

To test these preconditioners, Jacobians were generated from the Circuit Problem in Section
2.4.3. The Generalized Minimum Residual Method was used to solve the linear systems with a
randomly-generated right hand side.

2.4.5 Spectral Analysis

The pictures of the structure of two of the preconditioners discussed above shows that both pre-
conditioners are “simple” e.g., solving linear systems with these matrices is easy. The previous
table shows that the band-diag (%—f) preconditioner gives the smallest number of iterations for
all types of differentiators that were tried with it. The picture of the eigenvalues of band-diag
preconditioner using BE shows a cluster of 221 eigenvalues at (1,0) and the rest very close to
(1,0). This shows that band-diag is a very good preconditioner. However, this is not the case
of the block-diag (%—Z) preconditioner. It gives a big number of iterations and the picture of
the eigenvalues using BE, shows clusters away from (1,0). Therefore, the band-diag technique
produces an effective preconditioner.
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Structure of band-diag preconditioner using BEEigenvalues (with multiplicities) of band—diag preconditioner using BE

OR 0.1
ey
50 e 0.05
>
[
100 ; g o 4 221)
[
B E
150 R
-0.05
e
200 R
¥ -01
0 50 100 150 200 0 05 1 15
Real

Structure of block-diag (dH/dx) preconditioner using BE Eigenvalues of block—diag (dH/dx) preconditioner using BE

* ¥ %
% * * ¥
He #
50 05l % *»
. e *
100 g #
@ Ok * *
E ¥ *
150 P e
051 *
& e
200
. * 4 5 %
0 50 100 150 200 0 05 1 1.5 2
Real

3 Harmonic-Balance Methods

Harmonic-balance methods differ from time-domain methods in a fundamental way. Harmonic
balance approximates the solution using a linear combination of sinusoids. Since steady-state
responses are periodic, harmonic balances approximate the solution very naturally.

3.1 Introduction

Suppose we approximate the solution v(t) of (1) with a truncated Fourier series expansion

K
v(t) Hu(t) = Y A,
k=—K

where Ay = A* .. Thus there is a correspondence between u(t) and the vector

.
A_(k-1)
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Note that the derivative of ¢(¢) can be represented similarly:

g K K
dt d_ Z zkwt — Z Z-kquezkwt.
Thus we can represent the derivative as
—iwKq_ g [ g Kk | [ —iwK
—itw(K —1)q-g-1 g K 1 —iw(K — 1)
—iwg—1 q-1 —tw
0 = q0 , where Q = diag 0
1wq1 q iw
iw(K —1)gg—1 qK—1 iw(K —1)
wKqg i | 9k | | wK ]

We define
Hrp(X) = vn(Im ® F3)(f() ® In)(I;m ® Fp) X + Vn(InQ)(Im ® F)(q() ® In)(Im ® Fp)X.

We can interpret this as transforming the Fourier coefficients X into a time-domain waveform
vector via the Fourier matrix (I, ® Fj;) and a stride permutation. Then n copies of f() and ¢()
are evaluated at these waveform vectors. The resulting time-domain residuals are then converted
back into the frequency domain. m copies of the differential operator (2 are applied to the spectra
from gq().

3.2 Circuit Example

The following is an example of a circuit with 6 waveforms:

u(t) — Agcos(wat) = 0

d _
IR—aF+I+cc—-(vcc—v)+M =0
dt re
Ir—ap-In_ v . 4. _
re dt

lc%] —(vece—v) = 0
Ip—Is- (V=) _1) = 0
Igp—1Is- (eth(u—v) o 1) —

withle=92-10"% ,cc=39-1072 , r¢=1000, a- F = 0.98 , a- = 0.25 , ce = 1075, re = 8000
, vee = 15,vee = —15, Is = 10716 | and rVit = 40. We rewrlte this system of nonhnear ODE to



RF Communication Circuits 17

vcC

cc l rc

fit in (1):
[u ] [ u ] [ u ] [ 0 i
v Ip—a-Ip+1+ w v cc - (vee — v) COS("SAt)O
s Ip —a- Ip — (v s —ce s _
I 1|~ —(Ucc—v)re SR le- I » (1) = 8
Ip Ip —Is-(e"Vt(=s) 1) Ip 0 0
| IR Ip —Is- (erVt(u—v) _1q) [ IR L 0 i

We need to define the Jacobian of H to solve this equation using Newton’s method. The most
computationally expensive part is the factorization of Jy. The Jacobian also will be obtained
by the form in the previous section. We’ll introduce precondioners in the next section. Although
Newton’s method with linesearch is a strong zero-finding algorithm, it has been our experience
that without having a good initial value, the algorithm fails to converge. We can see that
finding a good initial guess is a key issue in determining its convergence. The responses for the
waveforms v and Ir are shown both in the time and frequency domains, in the following figure.
The behavior of the real solution for Ir shows the obvious nonlinearity. The response in the
frequency domains is obtained by the following way: Since the solution vector X is of the odd
centered form, we only take lower half vectors (including the DC term). Then the logarithm of
the absolute values of these vectors indicates the following graph when k=10 ( i.e. n = 21).
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3.3 Preconditioning
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We now consider two types of preconditioning in the frequency domain. In the cricuits example,
m = 6 and n = 21. Df, Dq, Df + Dq and the complete Jacobian matrix have the following
sparsity patterns:
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An obvious choice for a pre-conditioner would be to simply drop the Dg terms. That is,

define

J=In®G)DF) QL) Inm ®G).

An apply of this pre-conditioner requires a direct solve with (Df() ® I,) X, which is related
to (In ® Df()) by a stride permutation (Df version). This is fast and easy to implement.
Unfortunately, computational experience shows that this pre-conditioner works poorly.

Another construction is much stronger. In this case we pick the matrix of n diagonal m x m
blocks of DH as the pre-conditioner (DH version). From the following figure, it is easy to see

that the DH pre-conditioner is much better than D f version.
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Structure of DH preconditioner
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x 10 Eigenvalues of DH preconditioner
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To get a solution with relative residual le-11, Df version converged at about the 637¢
iteration, however, DH version converged at about the 3"? iteration.

4 Future Work

The authors would like to investigate further effective preconditioners for both the finite-difference
method and harmonic balance. In particular, they wish to pursue preconditioning the Jacobian
matrix arising from the centered-difference formula. Also, they will consider non-uniform time
steps in the discretization of the ODE. Adaptive refinements will be explored and upper bounds
on the error estimates will be given.
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